推荐论文集快速浏览

论文列表

A Survey on Session-based Recommender Systems

SBRS

历史

未来的方向

参考

[1] Ahmad M Ahmad Wasfi. 1998. Collecting user access patterns for building user profiles and collaborative filtering. In Proceedings of the 4th international conference on Intelligent user interfaces. ACM, 57–64
[2] Balázs Hidasi, Alexandros Karatzoglou, Oren Sar-Shalom, Sander Dieleman, Bracha Shapira, and Domonkos Tikk. 2017. DLRS 2017: Second Workshop on Deep Learning for Recommender Systems. In Proceedings of the Eleventh ACM Conference on Recommender Systems. ACM, 370–371.
[3] Alexandros Karatzoglou and Balázs Hidasi. 2017. Deep Learning for Recommender Systems. In Proceedings of the Eleventh ACM Conference on Recommender Systems. ACM, 396–397.
[4] Alexandros Karatzoglou, Balázs Hidasi, Domonkos Tikk, Oren Sar-Shalom, Haggai Roitman, Bracha Shapira, and Lior Rokach. 2016. RecSys’ 16 Workshop on Deep Learning for Recommender Systems (DLRS). In Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 415–416.
[5] Shoujin Wang and Longbing Cao. 2017. Inferring implicit rules by learning explicit and hidden item dependency. IEEE Transactions on Systems, Man, and Cybernetics: Systems (2017)
[6] Wei Wei, Xuhui Fan, Jinyan Li, and Longbing Cao. 2012. Model the complex dependence structures of financial variables by using canonical vine. In CIKM’12. 1382–1391.
[7] Jia Xu and Longbing Cao. 2018. Vine Copula-Based Asymmetry and Tail Dependence Modeling. In PAKDD’2018, Part I. 285–297.

基于规则的算法

Aprior 算法

FP-Tree

FP Tree

FP Growth

并行FP

序列FP

改进应用

序列模式挖掘

推荐理由

不同的解释形式

social-explain-rs.png

可解释的推荐方法

CNN文本推荐解释

可解释推荐的评估

应用

未来的方向

Deep Learning based Recommender System: A Survey and New Perspectives

BiNE: Bipartite Network Embedding

$$
P(i, j) = \frac{w_{ij}}{\sum_{ij} w_{ij}} \\
\hat{P}(i, j) = \frac{1}{1 + exp(- u_i^T v_j)} \\
min KL(P, \hat{P}) = - \sum_{ij} w_{ij} log \hat{P}(i,j)
$$

$$
w_{ij}^U = \sum_{k\in V}w_{ik} w_{jk}\\
w_{ij}^V = \sum_{k\in U}w_{ik} w_{jk}
$$

Session-based Recommendation with Graph Neural Networks

Graph Neural Networks for Social Recommendation